Local Similarity in Nonlinear Random Vibration

Author:

Krenk S.1,Roberts J. B.2

Affiliation:

1. Department of Structural Engineering and Materials, Technical University of Denmark, Lyngby, Denmark

2. School of Engineering, University of Sussex, Falmer, Brighton, Sussex, England

Abstract

A response analysis procedure is developed for oscillators with highly nonlinear stiffness and light nonlinear damping excited by non-white wide-band random noise based on local similarity between the random response and the deterministic response at the same energy level of the corresponding undamped oscillator. The analysis consists of three parts: introduction of modified phase plane variables, derivation of an approximate general form of the probability density of the response energy. for non-white excitation, and derivation of the spectral density function of the response from the conditional covariance function for a given energy level. The use of modified phase plane variables leads to a completely symmetric formulation and reformulates the stiffness nonlinearity as a nonlinear variation of the instantaneous angular frequency, and thereby a local rescaling of time. The probability density is obtained by averaging the full Fokker-Plank-Kolmogorov equation using local similarity, thus avoiding some theoretical problems associated with the traditional averaging of the stochastic differential equations. The use of local similarity with the exact undamped solution in the derivation of the conditional spectral density leads to a spectral density estimate, that contains the higher harmonic components explicitly. Comparisons of theoretical predictions with digital simulation estimates of both the probability and spectral densities for the Duffing oscillator demonstrate the accuracy of the theory.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3