Control of Flow Separation Around Bluff Obstacles by Transverse Magnetic Field

Author:

Chatterjee Dipankar1,Chatterjee Kanchan2,Mondal Bittagopal3

Affiliation:

1. Simulation and Modeling Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur-713209, India e-mail:

2. Department of Mechanical Engineering, Dr. B. C. Roy Engineering College, Durgapur-713206, India; National Institute of Technology Durgapur, Durgapur-713209, India

3. Simulation and Modeling Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur-713209, India

Abstract

Electromagnetic fields may be used to control the flow separation during the flow of electrically conducting fluids around bluff obstacles. The steady separated flow around bluff bodies at low Reynolds numbers almost behaves as a creeping flow at a certain field strength. This phenomena, although already known, is exactly quantified through numerical simulation and the critical field strength of an externally applied magnetic field is obtained, for which the flow separation is completely suppressed. The flow of a viscous, incompressible, and electrically conducting fluid (preferably liquid metal or an electrolyte solution) at a Reynolds number range of 10–40 and at a low magnetic Reynolds number is considered in an unbounded medium subjected to uniform magnetic field strength along the transverse direction. Circular and square cross sections of the bluff obstacles are considered for simulation purposes. Fictitious confining boundaries are chosen on the lateral sides of the computational domain that makes the blockage ratio (the ratio of the cylinder size to the width of the domain) 5%. The two-dimensional numerical simulation is performed following a finite volume approach based on the semi-implicit method for pressure linked equations (SIMPLE) algorithm. The major contribution is the determination of the critical Hartmann number for the complete suppression of the flow separation around circular and square cylinders for the steady flow in the low Reynolds number laminar regime. The recirculation length and separation angle are computed to substantiate the findings. Additionally, the drag and skin friction coefficients are computed to show the aerodynamic response of the obstacles under imposed magnetic field conditions.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3