Stall and Recovery Process of a Transonic Fan With and Without Inlet Distortion

Author:

Zhang Wenqiang1,Vahdati Mehdi1

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London, UK

Abstract

Abstract The aim of this research is to study the stall and recovery behavior of a transonic fan stage with and without inlet distortion. For this purpose, simulations of the stall and recovery process of NASA stage 67 are performed with clean and distorted inflow conditions. The rotor is pushed into stall by closing the exit nozzle. It is shown that in both cases, stall is initiated via spike but the subsequent development of the stall differs. In the stable rotating stall, both cases contain one stall cell traveling at 63% shaft speed. During the recovery process, when the exit nozzle is gradually opened, the size of this stall cell reduces as the corrected mass flow increases. Although the fan stalls at a larger mass flow with inlet distortion, it recovers to a similar corrected mass flow as the case with clean inflow, which indicates that inlet distortion has minor effects on the recovery process for this blade. In spite of the lack of data, detailed analysis based on past experience and physical reasoning is used to demonstrate the validity on numerical simulations. The author appreciates that a validated computational fluid dynamics (CFD) study can provide instructive results to other researchers.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3