Data Visualization, Data Reduction and Classifier Fusion for Intelligent Fault Diagnosis in Gas Turbine Engines

Author:

Donat William1,Choi Kihoon1,An Woosun1,Singh Satnam1,Pattipati Krishna1

Affiliation:

1. University of Connecticut, Storrs, CT 06268

Abstract

In this paper, we investigate four key issues associated with data-driven approaches for fault classification using the Pratt and Whitney commercial dual-spool turbofan engine data as a test case. The four issues considered here include the following. (1) Can we characterize, a priori, the difficulty of fault classification via self-organizing maps? (2) Do data reduction techniques improve fault classification performance and enable the implementation of data-driven classification techniques in memory-constrained digital electronic control units (DECUs)? (3) When does adaptive boosting, an incremental fusion method that successively combines moderately inaccurate classifiers into accurate ones, help improve classification performance? (4) How to synthesize classifier fusion architectures to improve the overall diagnostic accuracy? The classifiers studied in this paper are the support vector machine, probabilistic neural network, k-nearest neighbor, principal component analysis, Gaussian mixture models, and a physics-based single fault isolator. As these algorithms operate on large volumes of data and are generally computationally expensive, we reduce the data set using the multiway partial least squares method. This has the added benefits of improved diagnostic accuracy and smaller memory requirements. The performance of the moderately inaccurate classifiers is improved using adaptive boosting. These results are compared to the results of the classifiers alone, as well as different fusion architectures. We show that fusion reduces the variability in diagnostic accuracy, and is most useful when combining moderately inaccurate classifiers.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

1. An Assessment Methodology for Data Driven and Model-Based Techniques for Engine Health Monitoring;Butler

2. Fodor, I. K. , “A Survey of Data Reduction Techniques,” available online at: http://www.llnl.gov/casc/sapphire/pubs148494.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3