Modelling the Flow Around Airfoils Equipped with Vortex Generators Using a Modified 2D Navier–Stokes Solver

Author:

Nikolaou I. G.1,Politis E. S.1,Chaviaropoulos P. K.2

Affiliation:

1. Department of Wind Energy, Centre for Renewable Energy Sources, 19th km Marathonos Avenue, GR19009, Pikermi, Greece

2. Director of Renewable Energy Sources Division, Center for Renewable Energy Sources, 19th km Marathonos Avenue, GR19009, Pikermi, Greece

Abstract

Vortex generators (VGs) are commonly used for trimming the aerodynamic and aeroelastic performance of wind turbine blades by delaying flow separation. There is therefore a need for the development of reliable, still computationally affordable, models for blade designers to use to predict and enhance the aerodynamic characteristics of airfoils equipped with VGs. Such a model is proposed in the present paper, addressing in particular near-stall and post-stall airfoil performance. Starting from the three-dimensional Navier–Stokes equations that essentially describe the complex flow around a blade/VG configuration, a spanwise averaging procedure is applied, resulting in an equivalent set of two-dimensional equations, enriched with extra source terms. These terms are modelled using elementary vortex flow theory. In turbulent flows, the production term of the turbulent kinetic energy is also augmented by the vorticity induced by the VG. The model is evaluated by studying the flow past a blade section with and without VGs. An analysis of the performance of nine alternative VG configurations is also presented to demonstrate the sensitivity of the airfoil polars to the VG geometric parameters.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3