Affiliation:
1. Department of Physics, University of Otago, Dunedin, New Zealand
Abstract
We examine the exergy balance of a multi-component fluid subject to viscous dissipation processes, heat transfer by conduction, heat transfer by radiation, matter diffusion and chemical reactions. The differential equations for exergy balance in the fluid formalize the relationship between the exergy input/output approach to second law analysis and the entropy generation procedure using the Gouy-Stodola theorem. The balance relations for mass, momentum, energy and entropy are used to establish the validity conditions for the exergy balance equations. In particular, we define the role and significance of the assumption of local thermodynamic equilibrium. The general functions and restrictions of nonequilibrium thermodynamics within second law analysis are also discussed.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献