Hierarchical Iterative Learning Control for a Class of Distributed Hierarchical Systems

Author:

Igram Spencer1,Alleyne Andrew G.2ORCID

Affiliation:

1. ASML , San Diego, CA 92127

2. College of Science and Engineering, University of Minnesota , Minneapolis, MN 55455

Abstract

Abstract This work examines a class of distributed linear systems that fit a tree type of hierarchical structure. Therefore, unidirectional information flow from a subsystem higher in the hierarchy impacts subsystems lower in the hierarchy. While prior efforts at control focused on feedback solutions to these systems, this effort introduces Iterative Learning Control as a feedforward controller. This is termed hierarchical iterative learning control (HILC). This HILC can be implemented in parallel with feedback algorithms or can be used in a series feedforward manner assuming stable, or stabilized, subsystems. An augmentation of the standard learning update operators provides stability and monotonic convergence for the proposed approach. A simulation case study highlights the performance of the proposed design approach.

Funder

Sandia National Laboratories

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference21 articles.

1. Architectures for Distributed and Hierarchical Model Predictive Control–a Review;J. Process Control,2009

2. Robust Hierarchical Model Predictive Control of Graph-Based Power Flow Systems;Automatica,2018

3. Multi Time-Scale Engine and Powertrain Control for Autonomous Vehicles Via Lagrange Multipliers;ASME J. Dyn. Syst. Meas. Contr.,2022

4. An Analytic Solution to the Inverse Dynamics of an Energy Harvesting Tethered Kite;ASME J. Dyn. Syst. Meas. Contr.,2022

5. Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle;ASME J. Dyn. Syst. Meas. Contr.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3