Combined Natural and Forced Convective Heat Transfer In Spherical Annuli

Author:

Ramadhyani S.1,Zenouzi M.1,Astill K. N.1

Affiliation:

1. Department of Mechanical Engineering, Tufts University, Medford, Mass.

Abstract

This paper presents numerical finite difference solutions of combined natural and forced convective heat transfer in spherical annuli. The flow is assumed to enter the annulus through a port in the bottom of the outer sphere and exit through a diametrically opposite port. The spheres are isothermal and at different temperatures. The governing conservation equations are reduced to dimensionless form and the nondimensional parameters of the problem are identified. The influence of these parameters of the problem are identified. The influence of these parameters on the solution is studied. Details of the flow field and temperature field are presented by means of velocity vector and isotherm maps. Circumferential average and local Nusselt numbers are presented and compared with earlier numerical work in which the effects of natural convection were ignored. It is shown that the buoyancy effects can have a very significant impact on the heat transfer and fluid flow, particularly at low Reynolds numbers.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ANNULAR FREE CONVECTION HEAT EXCHANGER FOR SOLAR WATER HEATING SYSTEMS;Proceeding of Heat and Mass Transfer Australasia;2023

2. An experimental and numerical simulation of mixed convection in large baffled rectangular chambers;International Journal of Heat and Mass Transfer;1991-06

3. A Numerical Study of Turbulent Heat Transfer in a Spherical Annulus;Journal of Heat Transfer;1988-11-01

4. Heat transfer—a review of 1984 literature;International Journal of Heat and Mass Transfer;1985-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3