Affiliation:
1. Rotating Machinery and Controls (ROMAC) Lab, Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904 e-mail:
Abstract
Oil-lubricated bearings are widely used in high-speed rotating machines such as those used in the aerospace and automotive industries that often require this type of lubrication. However, environmental issues and risk-adverse operations have made water-lubricated bearings increasingly popular. Due to different viscosity properties between oil and water, the low viscosity of water increases Reynolds numbers drastically and therefore makes water-lubricated bearings prone to turbulence effects. The turbulence model is affected by eddy viscosity, while eddy viscosity depends on wall shear stress. Therefore, effective wall shear stress modeling is necessary in producing an accurate turbulence model. Improving the accuracy and efficiency of methodologies of modeling eddy viscosity in the turbulence model is important, especially considering the increasingly popular application of water-lubricated bearings and also the traditional oil-lubricated bearings in high-speed machinery. This purpose of this paper is to study the sensitivity of using different methodologies of solving eddy viscosity for turbulence modeling. Eddy viscosity together with flow viscosity forms the effective viscosity, which is the coefficient of the shear stress in the film. The turbulence model and Reynolds equation are bound together to solve when hydrodynamic analysis is performed, therefore improving the accuracy of the turbulence model is also vital to improving a bearing model's ability to predict film pressure values, which will determine the velocity and velocity gradients in the film. The velocity gradients in the film are the other term determining the shear stress. In this paper, three approaches applying Reichardt's formula were used to model eddy viscosity in the fluid film. These methods are for determining where one wall's effects begin and the other wall's effects end. Trying to find a suitable model to capture the wall's effects of these bearings, with an aim to improve the accuracy of the turbulence model, would be of high value to the bearing industry. The results of this study could aid in improving future designs and models of both oil- and water-lubricated bearings.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference13 articles.
1. Thermoelastohydrodynamic Lubrication in Thrust Bearings,1995
2. He, M., and Allaire, P., 2003, “Thermoelastohydrodynamic Analysis of Fluid Film Journal Bearings,” Ph.D. thesis, University of Virginia, Charlottesville, VA.https://elibrary.ru/item.asp?id=5710650
3. A Theory for Turbulent Fluid Films and Its Application to Bearings;ASME J. Lubr. Technol.,1967
4. A Thermohydrodynamic Analysis of Journal Bearings;ASME J. Lubr. Technol.,1979
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献