Numerical Modeling of Heavy-Oil Recovery Using Electromagnetic Radiation/Hydraulic Fracturing Considering Thermal Expansion Effect

Author:

Davletbaev A.1,Kovaleva L.1,Zainulin A.1,Babadagli T.2

Affiliation:

1. Department of Applied Physics, Bashkir State University, Ufa 450074, Bashkortostan, Russia

2. Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada

Abstract

Production of heavy oil from deep/tight formation using traditional technologies (“cold” production, injection of hot steam, etc.) is ineffective or inapplicable. An alternative is electromagnetic (EM) heating after fracturing. This paper presents the results of a numerical study of heavy oil production from a well with hydraulic fracture under radiofrequency (RF) EM radiation. Two parameters ignored in our previous modeling studies, namely adiabatic effect and the thermal expansion of oil, are considered in the new formulation, while high gradients of pressure/temperature and high temperature occur around the well. The mathematical model calculates the distribution of pressure and temperature in the system of “well-fracture-formation.” The distribution of thermal heat source is given by the Abernetty expression. The mathematical model takes into account the adiabatic effect and the thermal expansion of heavy oil. The latter makes a significant contribution to heavy oil production. Multistage heavy production technology with heating is assumed and several stages are recognized: stage 1: “Cold” heavy oil production, stage 2: RF-EM heating, and stage 3: RF is turned off and “hot” oil production continues until the flow rate reaches its initial (before heating) value. These stages are repeated starting from the second stage. Finally, RF-EM heating technology is compared to “cold” production in terms of additional oil production and economics. When producing with RF-EM heating with power 60 kW (50 days in the second stages), the oil rate increased several times. Repeated RF-EM heating (25 days in the fourth stage) doubled the production rate. Near-well region temperature increased by ∼82 °C in the second stage with RF-EM heating. Temperature increased by ∼87 °C in the fourth stage with repeated RF-EM heating and production cycles. Economic analysis and evaluation of energy balance showed that the multistage production technology is more efficient; i.e., the lower the payback period, the greater the energy balance. With the increase in pressure difference, the payback period and energy balance increased linearly.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference41 articles.

1. Method for Mineral Recovery,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3