Estimating Two Heat-Conduction Parameters From Two Complementary Transient Experiments

Author:

McMasters Robert L.1,de Monte Filippo2,Beck James V.3

Affiliation:

1. Department of Mechanical Engineering, Virginia Military Institute, Lexington, VA 24450 e-mail:

2. Department of Industrial and Information Engineering and Economics, University of L'Aquila, Via G. Gronchi n. 18, L'Aquila 67100, Italy

3. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824

Abstract

A desirable feature of any parameter estimation method is to obtain as much information as possible with one experiment. However, achieving multiple objectives with one experiment is often not possible. In the field of thermal parameter estimation, a determination of thermal conductivity, volumetric heat capacity, heat addition rate, surface emissivity, and convection coefficient may be desired from a set of temperature measurements in an experiment where a radiant heat source is used. It would not be possible to determine all of these parameters from such an experiment; more information would be needed. The work presented in the present research shows how thermal parameters can be determined from temperature measurements using complementary experiments where the same material is tested more than once using a different geometry or heating configuration in each experiment. The method of ordinary least squares is used in order to fit a mathematical model to a temperature history in each case. Several examples are provided using one-dimensional conduction experiments, with some having a planar geometry and some having a cylindrical geometry. The parameters of interest in these examples are thermal conductivity and volumetric heat capacity. Sometimes, both of these parameters cannot be determined simultaneously from one experiment but utilizing two complementary experiments may allow each of the parameters to be determined. An examination of confidence regions is an important topic in parameter estimation and this aspect of the procedure is addressed in the present work. A method is presented as part of the current research by which confidence regions can be found for results from a single analysis of multiple experiments.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3