Broadband and Enhanced Energy Harvesting Using Inerter Pendulum Vibration Absorber

Author:

Gupta Aakash1,Tai Wei-Che1

Affiliation:

1. Michigan State University

Abstract

Abstract Inerter-based vibration energy harvesters (VEHs) have been widely studied to harvest energy from large-scale structural vibrations. Recently, there have been efforts to increase the operation frequency bandwidth of VEHs by introducing a variety of stiffness and inertia nonlinearity. This paper proposes a new inerter-based VEH comprising an epicyclic-gearing inerter and a pendulum vibration absorber. The centrifugal force of the pendulum introduces a new type of inertia nonlinearity that broadens the frequency bandwidth. This inerter-pendulum VEH (IPVEH) is incorporated in a single-degree-of-freedom structure to demonstrate its performance and the equations of motion of the system are derived. The method of multiple scales is applied to derive the amplitude–frequency response relationship of the harvested power in the primary resonance. The harvested power is optimized through tuning the harvester’s electrical damping and the optimum power is benchmarked with that of conventional linear inerter-based VEHs. The results show that the IPVEH has larger bandwidth and harvested power and the improvement is correlated with the strength of its inertia nonlinearity.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3