A Spectral Description of Inertial Effects in Fluid-Loaded Plates

Author:

Ginsberg J. H.1,Cunefare K.1,Pham H.1

Affiliation:

1. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

The wavenumber-based formulation of the surface variational principle (SVP) describes the surface pressure and displacement as a comparatively small set of interacting waves. It enables one to pose questions of parametric sensitivity from a global perspective. The present paper is the first application of such an approach to the question of the level of detail to which a model must be constructed. It considers a two-dimensional problem of an elastic plate in an infinite baffle, with pinned boundary conditions. A study by Feit and Johnson (1991) demonstrated that the signal scattered by the plate is significantly altered by the presence of an attached mass, and that the distribution of mass as well as the total mass, is important. In order to explore these issues, a line mass attached to the plate is replaced in the SVP formulation by a continuous spatial distribution. The functional form of this distribution is described in a spectral manner using Fourier series, whose ascending orders represent successive stages in refinement of the scale to which a model describes inertial effects. The excitation applied to the plate is taken as a concentrated line harmonic force. With the excitation held fixed, the influence of each spectral component of inertial distribution on the surface response and radiated power are assessed. Evaluations carried out for a range of frequencies shed light on how small scale inertial heterogeneities can influence macroscopic radiation features.

Publisher

ASME International

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3