Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer

Author:

Park Jongmyung1,Goodro Matt1,Ligrani Phil2,Fox Mike3,Moon Hee-Koo3

Affiliation:

1. Department of Mechanical Engineering, Convective Heat Transfer Laboratory, University of Utah, 50 S. Central Campus Drive, MEB 2110, Salt Lake City, UT 84112-9208

2. Department of Engineering Sciences, Parks Road, University of Oxford, Oxford OX1 3PJ, UK

3. Aero/Thermal & Heat Transfer, Solar Turbines, Inc., 2200 Pacific Highway, P.O. Box 85376, Mail Zone C-9, San Diego, CA 92186-5376

Abstract

Limited available data suggest a substantial impact of Mach number on the heat transfer from an array of jets impinging on a surface at fixed Reynolds number. Many jet array heat transfer correlations currently in use are based on tests in which the jet Reynolds number was varied by varying the jet Mach number. Hence, this data may be inaccurate for high Mach numbers. Results from the present study are new and innovative because they separate the effects of jet Reynolds number and jet Mach number for the purposes of validating and improving correlations that are currently in use. The present study provides new data on the separate effects of Reynolds number and Mach number for an array of impinging jets in the form of discharge coefficients, local and spatially averaged Nusselt numbers, and local and spatially averaged recovery factors. The data are unique because data are given for impingement jet Mach numbers as high as 0.60 and impingement jet Reynolds numbers as high as 60,000, and because the effects of Reynolds number and Mach number are separated by providing data at constant Reynolds number because the Mach number is varied, and data at constant Mach number because the Reynolds number is varied. As such, the present data are given for experimental conditions not previously examined, which are outside the range of applicability of current correlations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3