Magnetofluidconvection in a Rotating Porous Layer Under Modulated Temperature on the Boundaries

Author:

Bhadauria B. S.1

Affiliation:

1. Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur-342005, India

Abstract

Thermal instability in an electrically conducting fluid saturated porous medium, confined between two horizontal walls, has been investigated in the presence of an applied vertical magnetic field and rotation, using the Brinkman model. The temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent oscillatory part. Only infinitesimal disturbances are considered. The combined effect of permeability, rotation, vertical magnetic field, and temperature modulation has been investigated using Galerkin’s method and Floquet theory. The value of the critical Rayleigh number is calculated as function of amplitude and frequency of modulation, Chandrasekhar number, Taylor number, porous parameter, Prandtl number, and magnetic Prandtl number. It is found that rotation, magnetic field, and porous medium all have a stabilizing influence on the onset of thermal instability. Further, it is also found that it is possible to advance or delay the onset of convection by proper tuning of the frequency of modulation of the walls’ temperature. In addition the results corresponding to the Brinkman model and Darcy model have been compared for neutral instability.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference34 articles.

1. Stability of Hydromagnetic Thermoconvective Flow Through Porous Medium;Patil;ASME J. Appl. Mech.

2. Stability of Finite-Amplitude and Overstable Convection of a Conducting Fluid Through Fixed Porous Bed;Rudrauah;Waerme- Stoffuebertrag.

3. On Setting Up of Convective Currents in a Rotating Porous Medium Under the Influence of Variable Viscosity;Patil;Int. J. Eng. Sci.

4. Linear and Non-linear Magnetoconvection in a Porous Medium;Rudraiah;Proc. Indian Acad. Sci., Math. Sci.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3