Compounded Heat Transfer Enhancement in Enclosure Natural Convection by Changing the Cold Wall Shape and the Gas Composition

Author:

Ridouane El Hassan1,Campo Antonio1

Affiliation:

1. Department of Mechanical Engineering, The University of Vermont, 201 Votey Bldg., 33 Colchester Ave., Burlington, VT 05405

Abstract

Abstract This article addresses compound heat transfer enhancement for gaseous natural convection in closed enclosures; that is, the simultaneous use of two passive techniques to obtain heat transfer enhancement, which is greater than that produced by only one technique itself. The compounded heat transfer enhancement comes from two sources: (1) reshaping the bounded space and (2) the adequacy of the gas. The sizing of enclosures is of great interest in the miniaturization of electronic packaging that is severely constrained by space and∕or weight. The gases consist in a subset of binary gas mixtures formed with helium (He) as the primary gas. The secondary gases are nitrogen (N2), oxygen (O2), carbon dioxide (CO2), methane (CH4), and xenon (Xe). The steady-state flow is governed by a system of 2-D coupled mass, momentum, and energy conservation equations, in conjunction with the ideal gas equation of state. The set of partial differential equations is solved using the finite volume method, for a square and a right-angled isosceles triangular enclosure, accounting for the second-order accurate QUICK and SIMPLE schemes. The grid layouts rendered reliable velocities and temperatures for air and the five gas mixtures at high Ra=106, producing errors within 1% were 18,500 and 47,300 elements for the square and triangle enclosures, respectively. In terms of heat transfer enhancement, helium is better than air for the square and the isosceles triangle. It was found that the maximum heat transfer conditions are obtained filling the isosceles triangular enclosure with a He–Xe gas mixture. This gives a good trade-off between maximizing the heat transfer rate while reducing the enclosure space in half; the maximum enhancement of triangle∕square went up from 19% when filled with air into 46% when filled with He–Xe gas mixture at high Ra=106.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. Natural Convection in Enclosures;Yang

2. Natural Convection;Raithby

3. Natural Convection;Jaluria

4. Transfert de Chaleur Dans un Dèdre a Géométrie Variable;Elicer-Cortés;Int. Commun. Heat Mass Transfer

5. Natural Convection in a Dihedral Enclosure;Elicer-Cortés;Exp. Heat Transfer

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Literature Survey of Numerical Heat Transfer (2000–2009): Part II;Numerical Heat Transfer, Part A: Applications;2011-12

2. Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid;Computers & Mathematics with Applications;2011-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3