Mapping-Based Hierarchical Sensitivity Analysis for Multilevel Systems With Multidimensional Correlations

Author:

Xu Can1,Zhu Ping1,Liu Zhao2,Tao Wei1

Affiliation:

1. The State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital, Manufacture for Thin-walled Structures, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Design, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract Hierarchical sensitivity analysis (HSA) of multilevel systems is to assess the effect of system’s input uncertainties on the variations of system’s performance through integrating the sensitivity indices of subsystems. However, it is difficult to deal with the engineering systems with complicated correlations among various variables across levels by using the existing hierarchical sensitivity analysis method based on variance decomposition. To overcome this limitation, a mapping-based hierarchical sensitivity analysis method is proposed to obtain sensitivity indices of multilevel systems with multidimensional correlations. For subsystems with dependent variables, a mapping-based sensitivity analysis, consisting of vine copula theory, Rosenblatt transformation, and polynomial chaos expansion (PCE) technique, is provided for obtaining the marginal sensitivity indices. The marginal sensitivity indices can allow us to distinguish between the mutual depend contribution and the independent contribution of an input to the response variance. Then, extended aggregation formulations for local variables and shared variables are developed to integrate the sensitivity indices of subsystems at each level so as to estimate the global effect of inputs on the response. Finally, this paper presents a computational framework that combines related techniques step by step. The effectiveness of the proposed mapping-based hierarchical sensitivity analysis (MHSA) method is verified by a mathematical example and a multiscale composite material.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3