An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser1

Author:

Everitt Jonathan N.1,Spakovszky Zoltán S.2

Affiliation:

1. e-mail:

2. e-mail:  Gas Turbine Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02193

Abstract

In compression systems, the stable operating range is limited by rotating stall and/or surge. Two distinct types of stall precursors can be observed prior to full scale instability: the development of long-wavelength modal waves or a short-wavelength, three-dimensional flow breakdown (so-called “spike” stall inception). The cause of the latter is not well understood; in axial machines it has been suggested that rotor blade-tip leakage flow plays an important role, but spikes have recently been observed in shrouded vaned diffusers of centrifugal compressors where these leakage flows are not present, suggesting an alternative mechanism may be at play. This paper investigates the onset of instability in a shrouded vaned diffuser from a highly loaded turbocharger centrifugal compressor and discusses the mechanisms thought to be responsible for the development of short-wavelength stall precursors. The approach combines unsteady 3D RANS simulations of an isolated vaned diffuser with previously obtained experimental results. The unsteady flow field simulation begins at the impeller exit radius, where flow is specified by a spanwise profile of flow angle and stagnation properties, derived from single-passage stage calculations but with flow pitchwise mixed. Through comparison with performance data from previous experiments and unsteady full-wheel simulations, it is shown that the diffuser is accurately matched to the impeller and the relevant flow features are well captured. Numerical forced response experiments are carried out to determine the diffuser dynamic behavior and point of instability onset. The unsteady simulations demonstrate the growth of short-wavelength precursors; the flow coefficient at which these occur, the rotation rate and circumferential extent agree with experimental measurements. Although the computational setup and domain limitations do not allow simulation of the fully developed spike nor full-scale instability, the model is sufficient to capture the onset of instability and allows the postulation of the following necessary conditions: (i) flow separation at the diffuser vane leading edge near the shroud endwall; (ii) radially reversed flow allowing vorticity shed from the leading edge to convect back into the vaneless space; and (iii) recirculation and accumulation of low stagnation pressure fluid in the vaneless space, increasing diffuser inlet blockage and leading to instability. Similarity exists with axial machines, where blade-tip leakage sets up endwall flow in the circumferential direction leading to flow breakdown and the inception of rotating stall. Rather than the tip leakage flows, the cause for circumferential endwall flow in the vaned diffuser is the combination of high swirl and the highly nonuniform spanwise flow profile at the impeller exit.

Publisher

ASME International

Subject

Mechanical Engineering

Reference35 articles.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3