Dynamic Performance Characteristics of Floating-Ring Bearings With Varied Oil-Injection Swirl-Control Angles

Author:

Tamunodukobipi Daniel1,Ho Kim Chang2,Lee Yong-Bok2

Affiliation:

1. Korea University of Science and Technology, Yuseong-gu, Deajeon, South Korea e-mail:

2. Center of Urban Energy System Research, Korea Institute of Science and Technology, Songbuk-gu, Seoul, South Korea e-mail:

Abstract

Hydrodynamic instability is a prime causative of performance irregularities and violent vibrations in floating-ring bearing (FRB) supported turbosystems. The quest for energy-efficient solutions to this has stimulated the development of diverse FRB design-geometries, dimensional relationships, and surface-contours. Unfortunately, these modifications are characterized mainly by model-predictors, which results lack sufficient test-data to benchmark their authenticities. This work presents the concept and the test-data of flow redirection in FRBs by using an oil-injection swirl-control mechanism (OISCM) to attenuate rotordynamic instabilities. FRBs with radius ratio = 1.75 and clearance ratio = 1.5 are tested for various OISCM angles (0 deg, 30 deg, and 60 deg) and under a specific load = 50 kN/m2. The test results indicate that FRBs with OISCM demonstrate substantial improvements in damping and stability characteristics. Their whirl-frequency-ratio (WFR) and cross-coupled forces are lower because of improved symmetry of films' pressure-forces (Kxx ≈ Kyy). Although the magnitudes of direct damping are higher (|Cxx| = 16.92 kN s/m for 60 deg and 6.03 kN s/m for 0 deg), the load capacity (Kxx) is slightly lower than the normal (0 deg), injection. Nonetheless, this discrepancy in load capacities becomes insignificant for speeds above 22 krpm. The WFR and subsynchronous amplitudes, which are graphic reflections of the bearing-based instability, become progressively smaller with increasing OISCM angle. However, this advantage at elevated speeds can only be sustained by a corresponding increase in oil-supply pressure to circumvent the advent of a starved inner-film and its attendant imbalance response and thermal growth. In closure, the OISCM bearing is more effective for mitigating rotordynamic instabilities in turborotors than conventional FRBs.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference18 articles.

1. Zeidan, F. Y., and Herbage, B. S., 1991, “Fluid Film Bearing Fundamentals and Failure Analysis,” Proceedings of the 20th Turbomachinery Symposium, pp. 161–186. Available at: http://turbolab.tamu.edu/proc/turboproc/T20/T20161-186

2. High-Speed Floating-Ring Bearing Test and Analysis;Trans. ASLE,1984

3. A Virtual Tool for Prediction of Turbocharger Nonlinear Dynamic Response: Validation Against Test Data,2006

4. Total Instability of Turbocharger Motors—Physical Explanation of the Dynamic Failure of Rotors With Full-Floating Ring Bearings;J. Sound Vib.,2009

5. An Analysis of the Full-Floating Journal Bearing,1947

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3