Numerical Predictions for the Flow Induced by an Enclosed Rotating Disc

Author:

Chew John W.1,Vaughan Craig M.2

Affiliation:

1. Rolls-Royce plc, Derby, UK

2. University of Sussex, Brighton, UK

Abstract

Finite difference solutions are presented for turbulent flow in the cavity formed between a rotating and a stationary disc, with and without a net radial outflow of fluid. The mean flow is assumed steady and axisymmetric and a mixing length model of turbulence is used. Grid dependency of the solutions is shown to be acceptably small and results are compared with other workers’ experimental data. Theoretical and measured disc moment coefficients are in good agreement, while theoretical and measured velocities are in reasonable agreement. It is concluded that the mixing-length model is sufficiently accurate for many engineering calculations of boundary layer dominated flows in rotating disc systems.

Publisher

American Society of Mechanical Engineers

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation and application of advanced CFD models for rotating disc flows;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-05-27

2. Flow Inside the Sidewall Gaps of Hydraulic Machines: A Review;Energies;2020-12-15

3. Turbulence Models for Simulation of the Flow in a Rotor-Stator Cavity;EPJ Web of Conferences;2019

4. Bibliography;Design and Analysis of Centrifugal Compressors;2018-12-27

5. Windage Heating in a Shrouded Rotor-Stator System;Journal of Engineering for Gas Turbines and Power;2014-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3