An Accurate Numerical Method for Solving Unsteady Isothermal Flow of a Gas Through a Semi-Infinite Porous Medium

Author:

Parand Kourosh1,Delkhosh Mehdi1

Affiliation:

1. Department of Computer Sciences, Shahid Beheshti University, Tehran 19697-64166, Iran e-mail:

Abstract

The Kidder equation, y″(x)+2xy′(x)/1−βy(x)=0, x∈[0,∞), β∈[0,1] with y(0)=1, and y(∞)=0, is a second-order nonlinear two-point boundary value ordinary differential equation (ODE) on the semi-infinite domain, with a boundary condition in the infinite that describes the unsteady isothermal flow of a gas through a semi-infinite micro–nano porous medium and has widely used in the chemical industries. In this paper, a hybrid numerical method is introduced for solving this equation. First, by using the method of quasi-linearization, the equation is converted to a sequence of linear ODEs. Then these linear ODEs are solved by using the rational Legendre functions (RLFs) collocation method. By using 200 collocation points, we obtain a very good approximation solution and the value of the initial slope y′(0)=−1.19179064971942173412282860380015936403 for β=0.50, highly accurate to 38 decimal places. The convergence of numerical results is shown by decreasing the residual errors when the number of collocation points increases.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3