A Numerical Static Friction Model for Spherical Contacts of Rough Surfaces, Influence of Load, Material, and Roughness

Author:

Chen W. Wayne1,Wang Q. Jane1

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

Abstract

The relative motion between two surfaces under a normal load is impeded by friction. Interfacial junctions are formed between surfaces of asperities, and sliding inception occurs when shear tractions in the entire contact area reach the shear strength of the weaker material and junctions are about to be separated. Such a process is known as a static friction mechanism. The numerical contact model of dissimilar materials developed by the authors is extended to evaluate the maximum tangential force (in terms of the static friction coefficient) that can be sustained by a rough surface contact. This model is based on the Boussinesq–Cerruti integral equations, which relate surface tractions to displacements. The materials are assumed to respond elastic perfectly plastically for simplicity, and the localized hardness and shear strength are set as the upper limits of contact pressure and shear traction, respectively. Comparisons of the numerical analysis results with published experimental data provide a validation of this model. Static friction coefficients are predicted for various material pairs in contact first, and then the behaviors of static friction involving rough surfaces are extensively investigated.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference42 articles.

1. The Friction and Lubrication of Solids

2. Friction—The Present State of Our Understanding;Tabor;ASME J. Lubr. Technol.

3. Design of Shirk-Fits;Paslay;Trans. ASME

4. The Tribology of Magnetic Recording Systems–An Overview;Rabinowicz

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3