A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations

Author:

Weinzapfel Nick1,Sadeghi Farshid1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

A model for deep-groove and angular-contact ball bearings was developed to investigate the influence of a flexible cage on bearing dynamics. The cage model introduces flexibility by representing the cage as an ensemble of discrete elements that allow deformation of the fibers connecting the elements. A finite element model of the cage was developed to establish the relationships between the nominal cage properties and those used in the flexible discrete element model. In this investigation, the raceways and balls have six degrees of freedom. The discrete elements comprising the cage each have three degrees of freedom in a cage reference frame. The cage reference frame has five degrees of freedom, enabling three-dimensional motion of the cage ensemble. Newton’s laws are used to determine the accelerations of the bearing components, and a fourth-order Runge–Kutta algorithm with constant step size is used to integrate their equations of motion. Comparing results from the dynamic bearing model with flexible and rigid cages reveals the effects of cage flexibility on bearing performance. The cage experiences nearly the same motion and angular velocity in the loading conditions investigated regardless of the cage type. However, a significant reduction in ball-cage pocket forces occurs as a result of modeling the cage as a flexible body. Inclusion of cage flexibility in the model also reduces the time required for the bearing to reach steady-state operation.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference14 articles.

1. NSK, UK, 2003, “Polyamide Bearing Cages ‘Come of Age’,” http://www.engineeringtalk.com/news/nsk/nsk149.html

2. The Dynamics of Ball Bearings;Walters;ASME J. Lubr. Technol.

3. Gas Turbine Engine Mainshaft Roller Bearing—System Analysis;Rumbarger;ASME J. Lubr. Technol.

4. Advanced Dynamics of Rolling Elements

5. An Analytical and Experimental Investigation of Ball Bearing Retainer Instabilities;Boesiger;ASME J. Tribol.

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3