Micro-Channels: Reality and Myth

Author:

Hetsroni G.1,Mosyak A.1,Pogrebnyak E.1,Yarin L. P.1

Affiliation:

1. Department of Mechanical Engineering, Technion- Israel Institute of Technology, Haifa 32000, Israel

Abstract

Many important problems connected to flows in micro-heat exchangers were not studied in sufficient detail. In particular, the governing physical mechanisms are still not well understood for flows in pipes and channels with hydraulic diameter ranging from 5 to 103 μm, which are often defined as micro-tubes or micro-channels. Experimental and numerical results of pressure driven laminar, continuous, incompressible, flow in different scale and shape channels are analyzed to highlight variations between various studies and these discrepancies are considered. The main objective is to determine whether the classical fluid flow theory based on the Navier- Stokes equations is valid to predict velocity distribution, pressure drop and transition from laminar to turbulent flow in micro-channels. No differences were found between results in micro-channels, unaffected by fluid ionic composition and the nature of the wall, and conventional size channels. The distinctions between different experimental studies must be attributed to different initial conditions, difference between actual conditions of a given experiment and conditions corresponding to the theoretical model, and measurement accuracy.

Publisher

ASME International

Subject

Mechanical Engineering

Reference69 articles.

1. Uber die Bewegung des Wassers in egen Zulindrischen Rohren;Hagen;Pogg. Ann.

2. J. Recherches Wxperrimentelles sur le Movement des Liquids Dans les Tubes de Tres Petits Diameters;Poiseuille;Compt. Rend.

3. High Performance Heat Sinking for VISI;Tuckerman;IEEE Electron Device Lett.

4. Engineering Flows in Small Devices; Microfluidies Toward a Lab-on-a-Chip;Stone;Ann. Rev. Fluid Mech.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3