Modeling of a Semisubmersible Floating Offshore Wind Platform in Severe Waves

Author:

Rivera-Arreba Irene1,Bruinsma Niek2,Bachynski Erin E.3,Viré Axelle4,Paulsen Bo T.2,Jacobsen Niels G.2

Affiliation:

1. Delft University of Technology, Wind Energy Section, Delft 2611JG, The Netherlands e-mail:

2. Deltares, Delft 2629 HV, The Netherlands e-mail:

3. Norwegian University of Science and Technology, Department of Marine Technology, Trondheim NO-7491, Norway e-mail:

4. Delft University of Technology, Wind Energy Section, Delft 2629 HS, The Netherlands e-mail:

Abstract

Floating offshore wind platforms may be subjected to severe sea states, which include both steep and long waves. The hydrodynamic models used in the offshore industry are typically based on potential-flow theory and/or Morison’s equation. These methods are computationally efficient and can be applied in global dynamic analysis considering wind loads and mooring system dynamics. However, they may not capture important nonlinearities in extreme situations. The present work compares a fully nonlinear numerical wave tank (NWT), based on the viscous Navier–Stokes equations, and a second-order potential-flow model for such situations. A comparison of the NWT performance with the experimental data is first completed for a moored vertical floating cylinder. The OC5-semisubmersible floating platform is then modeled numerically both in this nonlinear NWT and using a second-order potential-flow based solver. To test both models, they are subjected to nonsteep waves and the response in heave and pitch is compared with the experimental data. More extreme conditions are examined with both models. Their comparison shows that if the structure is excited at its heave natural frequency, the dependence of the response in heave on the wave height and the viscous effects cannot be captured by the adjusted potential-flow based model. However, closer to the inertia dominated region, the two models yield similar responses in pitch and heave.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3