Bayesian Model Screening for the Identification of Nonlinear Mechanical Structures

Author:

Kerschen Gae¨tan1,Golinval Jean-Claude1,Hemez Franc¸ois M.2

Affiliation:

1. Vibrations & Identification des Structures, Department of Aerospace, Mechanics and Materials, University of Lie`ge, Chemin des Chevreuils 1 (B52), B-4000 Liege, Belgium

2. Engineering Science & Applications Division, ESA-WR, Mail Stop P946, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

The development of techniques for identification and updating of nonlinear mechanical structures has received increasing attention in recent years. In practical situations, there is not necessarily a priori knowledge about the nonlinearity. This suggests the need for strategies that allow inference of useful information from the data. The present study proposes an algorithm based on a Bayesian inference approach for giving insight into the form of the nonlinearity. A family of parametric models is defined to represent the nonlinear response of a system and the selection algorithm estimates the likelihood that each member of the family is appropriate. The (unknown) probability density function of the family of models is explored using a simple variant of the Markov Chain Monte Carlo sampling technique. This technique offers the advantage that the nature of the underlying statistical distribution need not be assumed a priori. Enough samples are drawn to guarantee that the empirical distribution approximates the true but unknown distribution to the desired level of accuracy. It provides an indication of which models are the most appropriate to represent the nonlinearity and their respective goodness-of-fit to the data. The methodology is illustrated using two examples, one of which comes from experimental data.

Publisher

ASME International

Subject

General Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3