Effects of Simulated Particle Deposition on Film Cooling

Author:

Lawson S. A.1,Thole K. A.1

Affiliation:

1. Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802

Abstract

Diminishing natural gas resources has increased incentive to develop cleaner, more efficient combined-cycle power plants capable of burning alternative fuels such as coal-derived synthesis gas (syngas). Although syngas is typically filtered, particulate matter still exists in the hot gas path that has proven to be detrimental to the life of turbine components. Solid and molten particles deposit on film-cooled surfaces that can alter cooling dynamics and block cooling holes. To gain an understanding of the effects that particle deposits have on film cooling, a methodology was developed to simulate deposition in a low speed wind tunnel using a low melt wax, which can simulate solid and molten phases. A facility was constructed to simulate particle deposition on a flat plate with a row of film cooling holes. Infrared thermography was used to measure wall temperatures for quantifying spatially resolved adiabatic effectiveness values in the vicinity of the film cooling holes as deposition occurred. Results showed that deposition reduced cooling effectiveness by approximately 20% at momentum flux ratios of 0.23 and 0.5 and only 6% at a momentum flux ratio of 0.95.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3