Transport in Stochastic Fibrous Networks

Author:

Cheng X.1,Sastry A. M.1,Layton B. E.1

Affiliation:

1. Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109-2125

Abstract

Some fundamental issues concerning the design and performance of stochastic porous structures are examined, stemming from application of advanced fibrous electrode substrates in NiMH automotive cells. These electrodes must resist corrosion and local failures under hundreds of charge/discharge cycles. Such fibrous materials can be effectively used as substrates for chemical reactions because of their combinations of high surface area and high conductivity. Key questions concerning the relationships among connectivity and conductivity, scale and variability in material response are addressed. Two techniques are developed and compared for use in predicting these materials’ conductivity. The first approach uses a statistical technique in conjunction with an adaptation of classic micromechanical models. The second approach uses the statistical generation technique, followed by an exact calculation of 2D network conductivity. The two techniques are compared with one another and with classic results. Several important conclusions about the design of these materials are presented, including the importance of use of fibers with aspect ratios greater than at least 50, the weak effect of moderate alignment for unidirectional conductivity, and the weak power-law behavior of conductivity versus volume fraction over the range of possible behaviors.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Model for Investigating Sources of Li-Ion Battery Electrode Heterogeneity: Part II. Active Material Size, Shape, Orientation, and Stiffness;Journal of The Electrochemical Society;2021-12-01

2. Developments and Modeling of Electrical Conductivity in Composites;Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications;2019

3. Thermal or electrical bulk properties of rod-filled composites;International Journal of Engineering Science;2018-12

4. Thermal conductivity model for nanofiber networks;Journal of Applied Physics;2018-02-28

5. Thermal Conductivity of Biocomposite Materials;Biopolymer Composites in Electronics;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3