Laminar Flame Characteristics of Sequential Two-Stage Combustion of Premixed Methane/Air Flames

Author:

Duva Berk Can1,Wang Yen-Cheng1,Chance Lauren Elizabeth1,Toulson Elisa1

Affiliation:

1. Alternative Fuels and Combustion Laboratory, Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824

Abstract

Abstract Due to their high load flexibility and air-quality benefits, axial (sequential) stage combustion systems have become more popular among ground-based power gas turbine combustors. However, inert combustion residuals passing from the initial stage onto the secondary stage affects the reactivity and stability of the flame in the second stage of the combustor. The present study investigates laminar flame characteristics of the combustion within the second stage of a sequential combustor. The method of constant pressure for spherically expanding flames was employed to obtain laminar burning velocities (LBV) and burned gas Markstein lengths (Lb) of premixed methane/air mixtures diluted using flue gas at 3 bar and 423 K. Combustion residuals were imitated using a 19.01% H2O + 9.50% CO2 +71.49% N2 mixture by volume, while tested dilution ratios were 0%, 5%, 10%, and 15%. Experimental results showed that the LBV was decreased by 18–23%, 36–42%, and 50–52% with additions of 5%, 10%, and 15% combustion products, respectively. As the dilution and equivalence ratios increased, the Lb values increased slightly, suggesting that the stability and stretch of the CH4/air flames increased at these conditions. Numerical results were obtained from CHEMKIN using the GRI-Mech 3.0, USC Mech II, San Diego, HP-Mech, NUI Galway, and AramcoMech 1.3 mechanisms. The GRI-Mech 3.0 and HP-Mech performed best, with an average of 2% and 3% difference between numerical and experimental LBVs, respectively. The thermal-diffusion, dilution, and chemical effects of inert postcombustion gases on the LBV were found using numerical results. The dilution effect was primarily responsible, accounting for 79–84% of the LBV reduction.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference57 articles.

1. International Energy Outlook 2017;Energy Information Administration,2017

2. 10—Combustors,2012

3. Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines,2019

4. Combustion Regimes in Sequential Combustors: Flame Propagation and Autoignition at Elevated Temperature and Pressure;Combust. Flame,2019

5. Study of Sequential Two-Stage Combustion in a Low-Emission Gas Turbine Combustion Chamber;Therm. Eng.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3