Design of Single, Multiple, and Scaled Nonlinear Springs for Prescribed Nonlinear Responses

Author:

Jutte Christine Vehar1,Kota Sridhar1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

Abstract

Nonlinear springs enhance the performance of many applications including prosthetics, microelectromechanical systems devices, and vibration absorption systems. This paper describes a comprehensive approach to developing compliant elements of prescribed nonlinear stiffness. It presents a generalized methodology for designing a single planar nonlinear spring for a prescribed load-displacement function. The spring’s load-range, displacement-range, and nonlinear behavior are matched using this methodology, while also addressing stress, material, stability, and space constraints. Scaling guidelines are included within the optimization to relax the constraints on the solution space. Given the nonlinear nature of the spring designs, this paper further investigates their function in new configurations. Compliant structures with customized elastic properties are constructed by exploiting symmetry and by arranging nonlinear springs in series and/or in parallel. Scaling guidelines are used to meet new design specifications. The guidelines allow adjustment of load-range, displacement-range, material, and the overall footprint while preserving the spring’s nonlinear behavior without violating stress constraints. Various examples are provided throughout the paper to demonstrate the implementation and merit of these design approaches.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference34 articles.

1. Tunable Microelectromechanical Filters That Exploit Parametric Resonance;Rhoads;ASME J. Vibr. Acoust.

2. Nonlinear System Resonance Phenomena;Bajaj

3. Herder, J. , 2001, “Energy-Free Systems. Theory, Conception, and Design of Statically Balanced Spring Mechanisms,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.

4. Topology Optimization Design of Crushed 2D-Frames for Desired Energy Absorption History;Pedersen;Struct. Multidiscip. Optim.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3