Extension of Graph Theory to the Duality Between Static Systems and Mechanisms

Author:

Shai Offer1,Pennock Gordon R.2

Affiliation:

1. Department of Mechanics, Materials and Systems, Tel Aviv University, Ramat Aviv 69978, Israel

2. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

This paper is a study of the duality between the statics of a variety of structures and the kinematics of mechanisms. To provide insight into this duality, two new graph representations are introduced; namely, the flow line graph representation and the potential line graph representation. The paper also discusses the duality that exists between these two representations. Then the duality between a static pillar system and a planar linkage is investigated by using the flow line graph representation for the pillar system and the potential line graph representation for the linkage. A compound planetary gear train is shown to be dual to the special case of a statically determinate beam and the duality between a serial robot and a platform-type robot, such as the Stewart platform, is explained. To show that the approach presented here can also be applied to more general robotic manipulators, the paper includes a two-platform robot and the dual spatial linkage. The dual transformation is then used to check the stability of a static system and the stationary, or locked, positions of a linkage. The paper shows that two novel platform systems, comprised of concentric spherical platforms inter-connected by rigid rods, are dual to a spherical six-bar linkage. The dual transformation, as presented in this paper, does not require the formulation and solution of the governing equations of the system under investigation. This is an original contribution to the literature and provides an alternative technique to the synthesis of structures and mechanisms. To simplify the design process, the synthesis problem can be transformed from the given system to the dual system in a straightforward manner.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference26 articles.

1. Duality in Perspective;Girvin;Science

2. On Reciprocal Figures and Diagrams of Forces;Maxwell;Philos. Mag.

3. Mechanical Networks—III, Wrenches on Circuit Screws;Davies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3