Correlations for Convection in Hydrodynamically Developing Laminar Duct Flow

Author:

Bennett T. D.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93117-5070

Abstract

Abstract A generalized correlation for combined entry convection in ducts of arbitrary cross section has been developed. The correlation is constructed for the average Nusselt number using knowledge of fully developed transport constants. The general correlation reproduces the first principle solutions for the well-established round and parallel plate duct geometries to within ±5% for both constant temperature and constant heat flux wall conditions when Pr ≥ 0.7. A survey of the literature demonstrates that the new generalized correlation performs as well or better than existing correlations, which are expressed for specific geometries and wall conditions. The new correlation is generally in good agreement with the first principle solutions of less common duct geometries so long as the duct has a convective surface equal to the wetted perimeter. The new correlation is not recommended for ducts having small aspect ratios that pinch the flow when convection is prescribed by the H2 constant heat flux wall condition.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference34 articles.

1. Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts;ASME J. Heat Transfer,2004

2. Les Lois de la Transmission de Chaleur Par Convection;Ann. Des Mines, Memoires,1928

3. A Theoretical Approach to Predict the Performance of Chevron-Type Plate Heat Exchangers;Chem. Eng. Process.: Process Intensif.,1996

4. Correlations for the Graetz Problem in Convection—Part 1: For Round Pipes and Parallel Plates;Int. J. Heat Mass Transfer,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3