Computational Creativity Via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models

Author:

Deshpande Shrinath1,Purwar Anurag1

Affiliation:

1. Computer-Aided Design and Innovation Lab, Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794-2300

Abstract

Abstract Computational methods for kinematic synthesis of mechanisms for motion generation problems require input in the form of precision positions. Given the highly nonlinear nature of the problem, solutions to these methods are overly sensitive to the input—a small perturbation to even a single position of a given motion can change the topology and dimensions of the synthesized mechanisms drastically. Thus, the synthesis becomes a blind iterative process of maneuvering precision positions in the hope of finding good solutions. In this paper, we present a deep-learning-based framework which manages the uncertain user input and provides the user with a higher level control of the design process. The framework also imputes the input with missing information required by the computational algorithms. The approach starts by learning the probability distribution of possible linkage parameters with a deep generative modeling technique, called variational auto encoder (VAE). This facilitates capturing salient features of the user input and relating them with possible linkage parameters. Then, input samples resembling the inferred salient features are generated and fed to the computational methods of kinematic synthesis. The framework postprocesses the solutions and presents the concepts to the user along with a handle to visualize the variants of each concept. We define this approach as variational synthesis of mechanisms. In addition, we also present an alternate end-to-end deep neural network architecture for variational synthesis of linkages. This end-to-end architecture is a conditional-VAE, which approximates the conditional distribution of linkage parameters with respect to a coupler trajectory distribution. The outcome is a probability distribution of kinematic linkages for an unknown coupler path or motion. This framework functions as a bridge between the current state of the art theoretical and computational kinematic methods and machine learning to enable designers to create practical mechanism design solutions.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference26 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3