A Novel Approach to Kinematic Reliability Analysis for Planar Parallel Manipulators

Author:

Zhao Qiangqiang1,Guo Junkang1,Zhao Dingtang1,Yu Dewen1,Hong Jun1

Affiliation:

1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xianning West Road, Xi’an 710049, China

Abstract

Abstract Kinematic reliability is an essential index that assesses the performance of the mechanism associating with uncertainties. This study proposes a novel approach to kinematic reliability analysis for planar parallel manipulators based on error propagation on plane motion groups and clipped Gaussian in terms of joint clearance, input uncertainty, and manufacturing imperfection. First, the linear relationship between the local pose distortion coming from the passive joint and that caused by other error sources, which are all represented by the exponential coordinate, are established by means of the Baker–Campbell–Hausdorff formula. Then, the second-order nonparametric formulas of error propagation on independent and dependent plane motion groups are derived in closed form for analytically determining the mean and covariance of the pose error distribution of the end-effector. On this basis, the kinematic reliability, i.e., the probability of the pose error within the specified safe region, is evaluated by a fast algorithm. Compared to the previous methods, the proposed approach has a significantly high precision for both cases with small and large errors under small and large safe bounds, which is also very efficient. Additionally, it is available for arbitrarily distributed errors and can analyze the kinematic reliability only regarding either position or orientation as well. Finally, the effectiveness and advantages of the proposed approach are verified by comparing with the Monte Carlo simulation method.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3