Enhanced Evaporation of Microscale Droplets With an Infrared Laser

Author:

Ferraz-Albani Luis A.1,Baldelli Alberto1,Knapp Chrissy J.2,Jäger Wolfgang2,Vehring Reinhard1,Nobes David S.1,Olfert Jason S.3,Kostiuk Larry W.1

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2G8, Canada

2. Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada

3. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2G8, Canada e-mail:

Abstract

Enhancement of water droplet evaporation by added infrared radiation was modeled and studied experimentally in a vertical laminar flow channel. Experiments were conducted on droplets with nominal initial diameters of 50 μm in air with relative humidities ranging from 0% to 90% RH. A 2800 nm laser was used with radiant flux densities as high as 4 × 105 W/m2. Droplet size as a function of time was measured by a shadowgraph technique. The model assumed quasi-steady behavior, a low Biot number liquid phase, and constant gas–vapor phase material properties, while the experimental results were required for model validation and calibration. For radiant flux densities less than 104 W/m2, droplet evaporation rates remained essentially constant over their full evaporation, but at rates up to 10% higher than for the no radiation case. At higher radiant flux density, the surface-area change with time became progressively more nonlinear, indicating that the radiation had diminished effects on evaporation as the size of the droplets decreased. The drying time for a 50 μm water droplet was an order of magnitude faster when comparing the 106 W/m2 case to the no radiation case. The model was used to estimate the droplet temperature. Between 104 and 5 × 105 W/m2, the droplet temperature changed from being below to above the environment temperature. Thus, the direction of conduction between the droplet and the environment also changed. The proposed model was able to predict the changing evaporation rates for droplets exposed to radiation for ambient conditions varying from dry air to 90% relative humidity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3