CFD Analysis of Jet Mixing in Low NOx Flametube Combustors

Author:

Talpallikar M. V.1,Smith C. E.1,Lai M. C.2,Holdeman J. D.3

Affiliation:

1. CFD Research Corporation, Huntsville, AL 35805

2. Wayne State University, Detroit, MI 48202

3. NASA Lewis Reserch Center, Cleveland, OH 44135

Abstract

The Rich-burn/Quick-mix/Lean-burn (RQL) combustor has been identified as a potential gas turbine combustor concept to reduce NOx emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NOx levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing bypass combustion air with rich-burn gases. In this study, jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed 12 radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric varation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both nonreacting and reacting analyses were performed. Results showed mixing and NOx emissions to be highly sensitive to J and slot aspect ratio. Lowest NOx emissions occurred when the dilution jet penetrated to approximately midradius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3