An Investigation of Condensation Effects in Supercritical Carbon Dioxide Compressors

Author:

Lettieri C.1,Yang D.1,Spakovszky Z.1

Affiliation:

1. Gas Turbine Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 e-mail:

Abstract

Supercritical CO2 (S-CO2) power cycles have demonstrated significant performance improvements in concentrated solar and nuclear applications. These cycles promise an increase in thermal-to-electric conversion efficiency of up to 50% over conventional gas turbines (Wright, S., 2012, “Overview of S-CO2 Power Cycles,” Mech. Eng., 134(1), pp. 40–43), and have become a priority for research, development, and deployment. In these applications the CO2 is compressed to pressures above the critical value using radial compressors. The thermodynamic state change of the working fluid is close to the critical point and near the vapor–liquid equilibrium region where phase change effects are important. This paper presents a systematic assessment of condensation on the performance and stability of centrifugal compressors operating in S-CO2. The approach combines numerical simulations with experimental tests. The objectives are to assess the relative importance of two-phase effects on the internal flow behavior and to define the implications for radial turbomachinery design. The condensation onset is investigated in a systematic manner approaching the critical point. A nondimensional criterion is established that determines whether condensation might occur. This criterion relates the time required for stable liquid droplets to form, which depends on the expansion through the vapor–pressure curve, and the residence time of the flow under saturated conditions. Two-phase flow effects can be considered negligible when the ratio of the two time scales is much smaller than unity. The study shows that condensation is not a concern away from the critical point. Numerical two-phase calculations supported by experimental data indicate that the timescale associated with nucleation is much longer than the residence time of the flow in the saturated region, leaving little opportunity for the fluid to condense. Pressure measurements in a converging diverging nozzle show that condensation cannot occur at the level of subcooling characteristic of radial compressors away from the critical point. The implications are not limited to S-CO2 power cycles but extend to applications of radial machines for dense, saturated gases. In the immediate vicinity of the critical point, two-phase effects are expected to become more prominent due to longer residence times. However, the singular behavior of thermodynamic properties at the critical point prevents the numerical schemes from capturing important gas dynamic effects. These limitations require experimental assessment, which is the focus of ongoing and future research.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference15 articles.

1. Overview of S-CO2 Power Cycles;Mech. Eng.,2012

2. An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors;ASME,2014

3. Rinaldi, E., Pecnik, R., and Colonna, P., 2013, “Steady State CFD Investigation of a Radial Compressor Operating With Supercritical CO2,” ASME Paper No. GT2013-9458010.1115/GT2013-94580.

4. Nucleation of Steam in High-Pressure Nozzle Experiments;Proc. Inst. Mech. Eng., Part A,2005

5. Compressible Flows With Given Internal Heat Addition,1995

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3