The Merits of a Parallel Genetic Algorithm in Solving Hard Optimization Problems

Author:

van Soest A. J. Knoek1,Casius L. J. R. Richard1

Affiliation:

1. Faculty of Human Movement Sciences Institute for Fundamental and Clinical Human Movement Sciences, Free University Amsterdam, van der Boechorststraat 9, NL 1081 Amsterdam, The Netherlands

Abstract

A parallel genetic algorithm for optimization is outlined, and its performance on both mathematical and biomechanical optimization problems is compared to a sequential quadratic programming algorithm, a downhill simplex algorithm and a simulated annealing algorithm. When high-dimensional non-smooth or discontinuous problems with numerous local optima are considered, only the simulated annealing and the genetic algorithm, which are both characterized by a weak search heuristic, are successful in finding the optimal region in parameter space. The key advantage of the genetic algorithm is that it can easily be parallelized at negligible overhead.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational performance of musculoskeletal simulation in OpenSim Moco using parallel computing;International Journal for Numerical Methods in Biomedical Engineering;2023-09-25

2. The Force–Velocity Profile for Jumping: What It Is and What It Is Not;Medicine & Science in Sports & Exercise;2023-03-18

3. Identification of mechanical properties of arteries with certification of global optimality;Journal of Global Optimization;2021-05-28

4. Effect of vasti morphology on peak sprint cycling power of a human musculoskeletal simulation model;Journal of Applied Physiology;2020-02-01

5. A Formal Model for Reasoning About the Ideal Fitness in Evolutionary Processes;Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3