Looseness Diagnosis of Rotating Machinery Via Vibration Analysis Through Hilbert–Huang Transform Approach

Author:

Wu T. Y.1,Chung Y. L.2,Liu C. H.3

Affiliation:

1. Research Center for Adaptive Data Analysis, National Central University, Jhongli City, Taoyuan County 320, Taiwan

2. Advanced Mechanical Technology Department, Industrial Technology Research Institute, Chutung, Hsinchu County 310, Taiwan

3. Department of Power Mechanical Engineering, National Tsing-Hua University, Hsinchu City 300, Taiwan

Abstract

The objective of this research in this paper is to investigate the feasibility of utilizing the Hilbert–Huang transform method for diagnosing the looseness faults of rotating machinery. The complicated vibration signals of rotating machinery are decomposed into finite number of intrinsic mode functions (IMFs) by integrated ensemble empirical mode decomposition technique. Through the significance test, the information-contained IMFs are selected to form the neat time-frequency Hilbert spectra and the corresponding marginal Hilbert spectra. The looseness faults at different components of the rotating machinery can be diagnosed by measuring the similarities among the information-contained marginal Hilbert spectra. The fault indicator index is defined to measure the similarities among the information-contained marginal Hilbert spectra of vibration signals. By combining the statistical concept of Mahalanobis distance and cosine index, the fault indicator indices can render the similarities among the marginal Hilbert spectra to enhanced and distinguishable quantities. A test bed of rotor-bearing system is performed to illustrate the looseness faults at different mechanical components. The effectiveness of the proposed approach is evaluated by measuring the fault indicator indices among the marginal Hilbert spectra of different looseness types. The results show that the proposed diagnosis method is capable of classifying the distinction among the marginal Hilbert spectra distributions and thus identify the type of looseness fault at machinery.

Publisher

ASME International

Subject

General Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3