Swirling Gas–Liquid Two-Phase Flow—Experiment and Modeling Part II: Turbulent Quantities and Core Stability

Author:

Gomez L.1,Mohan R.1,Shoham O.1

Affiliation:

1. The University of Tulsa, 600 S. College Ave., Tulsa, OK 74104

Abstract

In Part I of this two-part paper on swirling gas–liquid two-phase flow, correlations have been developed for the continuous liquid-phase velocity field under swirling conditions, such as that occurring in the lower part of the Gas–Liquid Cylindrical Cyclone (GLCC©1) compact separator. The developed correlations, including the axial, tangential, and radial velocity distributions, are applicable for swirling flow in both cyclones and pipe flow. The first objective of this paper is to extend the study of Part I by developing correlations for the turbulent quantities of the continuous liquid phase, including the turbulent kinetic energy and its dissipation rate and Reynolds shear stresses. The second objective is to study experimentally and theoretically two-phase swirling flow gas-core characteristics and stability. The first objective has been met utilizing local LDV measurements acquired for swirling flow. The developed turbulent quantities correlations have been tested against data from other studies, showing good agreement. For the second objective, experimental data have been acquired under swirling two-phase flow conditions. A model for the prediction of the gas-core diameter and stability in swirling flow field has been developed, based on the turbulent kinetic energy behavior predicted by the developed correlations. Good agreement is observed between the model predictions and the data.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3