Self-Induced Vibrations in Metal Cutting

Author:

Albrecht Paul1

Affiliation:

1. Physical Research Department, The Cincinnati Milling Machine Company, Cincinnati, Ohio

Abstract

Solution of the problem of dynamic stability for the machine tool-cutting process system depends primarily on the assessment of behavior of the cutting process under dynamic conditions. It has been found that under dynamic conditions, apart from force fluctuations due to variations in cutting conditions, additional force fluctuations take place as a result of cyclic variations of the shear angle in the cutting process. Difference in force response of a cutting process to the static dynamic variations of the cutting conditions has been explained by the presence of cyclic variations of shear angle under dynamic conditions. Peaks of the force wave, resulting from dynamic variation of the cutting conditions, are known to be displaced with respect to the originating wave. This displacement has been thought to be due to a time lag of the whole force response; however a sound physical basis for this point of view has not previously been found. The present investigation provides a physical basis for such observations, showing that the displacement of force peaks is caused by the skewing of the force wave by the presence of asymmetric force pulses due to cyclic variations of shear angle. The same event—the cyclic variation of the shear angle—has been recognized to be a sign of instability of the cutting process in itself, resulting in a cyclic chip formation process. Instability of the cutting process in itself has been found to depend mainly on the cutting conditions and not on the dynamic properties of the cutting system. Analytical expressions derived for the frequency and amplitude of cyclic chip formation have been found to be in a good agreement with the results of measurements of these quantities. Study of the effects of dynamic events in metal cutting upon tool life has revealed propagation of fatigue cracks on the wear land. The propagation of the cracks has been found to be in good correlation with the presence of force pulses due to the cyclic chip formation. The way in which the foregoing event affects the tool life has been reconstructed, allowing selection of those conditions which improve tool life.

Publisher

ASME International

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3