NO x Formation in High-Pressure Jet-Stirred Reactors With Significance to Lean-Premixed Combustion Turbines

Author:

Rutar T.1,Malte P. C.2

Affiliation:

1. Department of Mechanical Engineering, Seattle University, 900 Broadway, Seattle, WA 98122-4340

2. Department of Mechanical Engineering, University of Washington, Box 352600, Seattle, WA 98195-2600

Abstract

Measurements of NOx and CO in methane-fired, lean-premixed, high-pressure jet-stirred reactors (HP-JSRs), independently obtained by two researchers, are well predicted assuming simple chemical reactor models and the GRI 3.0 chemical kinetic mechanism. The single-jet HP-JSR is well modeled for NOx and CO assuming a single PSR for Damko¨hler number below 0.15. Under these conditions, the estimates of flame thickness indicate the flame zone, that is, the region of rapid oxidation and large concentrations of free radicals, fully fills the HP-JSR. For Damko¨hler number above 0.15, that is, for longer residence times, the NOx and CO are well modeled assuming two perfectly stirred reactors (PSRs) in series, representing a small flame zone followed by a large post-flame zone. The multijet HP-JSR is well modeled assuming a large PSR (over 88% of the reactor volume) followed by a short PFR, which accounts for the exit region of the HP-JSR and the short section of exhaust prior to the sampling point. The Damko¨hler number is estimated between 0.01 and 0.03. Our modeling shows the NOx formation pathway contributions. Although all pathways, including Zeldovich (under the influence of super-equilibrium O-atom), nitrous oxide, Fenimore prompt, and NNH, contribute to the total NOx predicted, of special note are the following findings: (1) NOx formed by the nitrous oxide pathway is significant throughout the conditions studied; and (2) NOx formed by the Fenimore prompt pathway is significant when the fuel-air equivalence ratio is greater than about 0.7 (as might occur in a piloted lean-premixed combustor) or when the residence time of the flame zone is very short. The latter effect is a consequence of the short lifetime of the CH radical in flames.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3