The Impact of Density Ratio on the Liquid Core Dynamics of a Turbulent Liquid Jet Injected Into a Crossflow

Author:

Herrmann Marcus1,Arienti Marco2,Soteriou Marios2

Affiliation:

1. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287

2. United Technologies Research Center, Hartford, CT 06108

Abstract

Atomizing liquids by injecting them into crossflows is a common approach in gas turbines and augmentors. Much of our current understanding of the processes resulting in atomization of the jets, the resulting jet penetration and spray drop size distribution have been obtained by performing laboratory experiments at ambient conditions. Yet, operating conditions under which jets in crossflows atomize can be far different from ambient. Hence, several dimensionless groups have been identified that are believed to determine jet penetration and resulting drop size distribution. These are usually the jet and crossflow Weber and Reynolds numbers and the momentum flux ratio. In this paper, we aim to answer the question of whether an additional dimensionless group, the liquid to gas density ratio must be matched. We perform detailed simulations of the primary atomization region using the refined level set grid (RLSG) method to track the motion of the liquid/gas phase interface. We employ a balanced force, interface projected curvature method to ensure high accuracy of the surface tension forces, use a multiscale approach to transfer broken off, small scale nearly spherical drops into a Lagrangian point particle description allowing for full two-way coupling and continued secondary atomization, and employ a dynamic Smagorinsky large eddy simulation (LES) approach in the single phase regions of the flow to describe turbulence. We present simulation results for a turbulent liquid jet (q=6.6, We=330, and Re=14,000) injected into a gaseous crossflow (Re=740,000) analyzed under ambient conditions (density ratio 816) experimentally by Brown and McDonnell [2006, “Near Field Behavior of a Liquid Jet in a Crossflow,” Proceedings of the ILASS Americas, 19th Annual Conference on Liquid Atomization and Spray Systems]. We compare simulation results obtained using a liquid to gas density ratio of 10 and 100. The results show that the increase in density ratio causes a noticeable increase in liquid core penetration with reduced bending and spreading in the transverse directions. The post-primary atomization spray penetrates further in both the jet and transverse direction. Results further show that the penetration correlations for the windward side trajectory commonly reported in the literature strongly depend on the value of threshold probability used to identify the leading edge. Correlations based on penetration of the jet’s liquid core center of mass, on the other hand, can provide a less ambiguous measure of jet penetration. Finally, the increase in density ratio results in a decrease in wavelength of the most dominant feature associated with a traveling wave along the jet as determined by proper orthogonal decomposition.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference38 articles.

1. Properties of Nonturbulent Round Liquid Jets in Uniform Gaseous Cross Flows;Aalburg;Atomization Sprays

2. Air Density Effect on the Atomization of Liquid Jets in Crossflow;Bellofiore;Combust. Sci. Technol.

3. Role of Viscosity on Trajectory of Liquid Jets in a Cross-Airflow;Birouk;Atomization Sprays

4. Near Field Behavior of a Liquid Jet in a Crossflow;Brown

5. Investigation of the Effect of Injector Discharge Coefficient on Penetration of a Plain Liquid Jet Into a Subsonic Crossflow;Brown

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3