A Mixing Based Model for Di-methyl Ether Combustion in Diesel Engines

Author:

Bek B. H.1,Sorenson S. C.1

Affiliation:

1. Department of Energy Engineering, Technical University of Denmark, Building 403, DK-2800 Lyngby, Denmark

Abstract

A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made on the basis of the very high Cetane number for DME. A spray model similar to that proposed by Hiroyasu et al. [11] has been used, with the assumption that rapid combustion occurs when the local mixture attains a stoichiometric air fuel ratio. The spray structure is based on steady-state spray theory, where the shape of the spray has been modified to match the measured spray penetration rates. The spray theory and experimentally determined penetrations implicitly determine the rate of air entrainment into the spray. The results show that the combustion rates calculated during the mixing controlled portion of combustion agree well with experimental measurements from a previous study, without additional adjustment.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3