Validation of Broadband Noise Prediction Methodology Based on Linearized Navier–Stokes Analyses

Author:

Blázquez-Navarro Ricardo1,Corral Roque1

Affiliation:

1. Universidad Politécnica de Madrid Department of Fluid Mechanics and Aerospace Propulsion, School of Aeronautics and Space, , Madrid 28040 , Spain

Abstract

Abstract This article presents an integral validation of a synthetic turbulence broadband noise prediction methodology for fan/outlet-guide-vane (OGV) interaction. The test vehicle is the ACAT1 fan, a modern scaled-down fan, experimentally analyzed in 2018 within the TurboNoiseBB project. Three operating points, namely, Approach, Cutback, and Sideline, and two different rig configurations in terms of the axial gap between the fan and OGV are examined within this work. The methodology consists of using a Reynolds-averaged Navier–Stokes (RANS) solver to model the fan wake and the use of two-dimensional frequency domain linearized Navier–Stokes simulations to resolve the acoustics, including quasi-3D corrections to obtain representative results. The RANS results with no ad hoc tuning are compared in detail against hotwire data to determine the degree of uncertainty incurred by this kind of approach. The predicted broadband noise spectra and noise azimuthal decompositions are compared against the experimental data. The spectral levels are well predicted despite an average underprediction of around 3dB. The noise azimuthal decompositions feature a remarkable agreement with the experiment, denoting accurate modeling of the main physics governing the problem. The impact of increasing the fan/OGV axial gap is quantified numerically for the first time. It is concluded that increasing the gap is detrimental for the broadband noise footprint, unlike intuitively could be expected. Overall, the presented broadband noise methodology yields robust broadband noise predictions at an industrially feasible cost and enables a deeper understanding of the problem.

Funder

Directorate-General for Research and Innovation

Publisher

ASME International

Subject

Mechanical Engineering

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3