A Review on Origami Simulations: From Kinematics, To Mechanics, Toward Multiphysics

Author:

Zhu Yi1,Schenk Mark2,Filipov Evgueni T.3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, MI 48109

2. Department of Aerospace Engineering, University of Bristol , Bristol BS8 1TR, UK

3. Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, MI 48109; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

Abstract

Abstract Origami-inspired systems are attractive for creating structures and devices with tunable properties, multiple functionalities, high-ratio packaging capabilities, easy fabrication, and many other advantageous properties. Over the past decades, the community has developed a variety of simulation techniques to analyze the kinematic motions, mechanical properties, and multiphysics characteristics of origami systems. These various simulation techniques are formulated with different assumptions and are often tailored to specific origami designs. Thus, it is valuable to systematically review the state-of-the-art in origami simulation techniques. This review presents the formulations of different origami simulations, discusses their strengths and weaknesses, and identifies the potential application scenarios of different simulation techniques. The material presented in this work aims to help origami researchers better appreciate the formulations and underlying assumptions within different origami simulation techniques, and thereby enable the selection and development of appropriate origami simulations. Finally, we look ahead at future challenges in the field of origami simulation.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3