Flame Propagation Following the Autoignition of Axisymmetric Hydrogen, Acetylene, and Normal-Heptane Plumes in Turbulent Coflows of Hot Air

Author:

Markides Christos N.1,Mastorakos Epaminondas1

Affiliation:

1. Hopkinson Laboratory, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, Cambridgeshire CB2 1PZ, UK

Abstract

Axisymmetric plumes of hydrogen, acetylene, or n-heptane were formed by the continuous injection of (pure or nitrogen-diluted) fuel into confined turbulent coflows of hot air. Autoignition and subsequent flame propagation was visualized with an intensified high-speed camera. The resulting phenomena that were observed include the statistically steady “random spots” regime and the “flashback” regime. It was found that with higher velocities and smaller injector diameters, the boundary between random spots and flashback shifted to higher air temperatures. In the random spots regime the autoignition regions moved closer to the injector with increasing air temperature and/or decreasing air velocity. After a localized explosive autoignition event, flames propagated into the unburnt mixture in all directions and eventually extinguished, giving rise to autoignition spots of mean radii of 2–5mm for hydrogen and 6–10mm for the hydrocarbons. The average flame propagation velocity in both the axial and radial directions varied between 0.5 and 1.2 times the laminar burning speed of the stoichiometric mixture, increasing as the autoigniting regions shifted upstream.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3