Complete Characterization of a Highly Loaded Low Pressure Compressor at Different Reynolds Numbers for Computational Fluid Dynamics Simulations

Author:

Hadavandi Ruzbeh1,Fontaneto Fabrizio1,Desset Julien2

Affiliation:

1. Jacques Chauvin Laboratory, Turbomachinery and Propulsion Department, Von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, Rhode-St-Genèse B-1640, Belgium e-mail:

2. Jacques Chauvin Laboratory, Turbomachinery and Propulsion Department, Von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse, Belgium e-mail:

Abstract

Computational fluid dynamics (CFD) is nowadays extensively used for turbomachinery design and performance prediction. Nevertheless, compressors numerical simulations still fail in correctly predicting the stall inception and the poststall behavior. Several authors address such a lack of accuracy to the incomplete definition of the boundary conditions and of the turbulence parameters at the inlet of the numerical domain. The aim of the present paper is to contribute to the development of compressors CFD by providing a complete set of input data for numerical simulations. A complete characterization has been carried out for a state-of-art 1.5 stage highly loaded low-pressure compressor for which previous CFD analyses have failed to predict its behavior. The experimental campaign has been carried out in the R4 facility at the Von Karman Institute for Fluid Dynamics (VKI). The test item has been tested in different operative conditions for two different speed lines (90% and 96% of the design speed) and for two different Reynolds numbers. Stable and unstable operative conditions have been investigated along with the stalling behavior, its inception, and the stall-cell flow field. Discrete hot-wire traverses have been performed in order to characterize the spanwise velocity field and the turbulence characteristics.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3