Laminar Film Condensation of a Flowing Vapor on a Horizontal Cylinder at Normal Gravity

Author:

Denny V. E.1,Mills A. F.1

Affiliation:

1. University of California, Los Angeles, Calif.

Abstract

An analytical solution, based on the Nusselt assumptions, has been obtained for laminar film condensation of a flowing vapor on a horizontal cylinder. In so doing, a reference temperature for evaluating locally variable fluid properties is defined in the form Tr = Tw + α (Ts − Tw) and accounts for both the effects of fluid property variations and minor errors introduced by the assumptions in the analysis. Verification was obtained by comparison with exact numerical solutions based on a finite-difference analog to the conservation equations in boundary-layer form. In the analytical as well as the numerical developments, vapor drag was accounted for through an asymptotic solution of the vapor boundary layer under strong suction. It was found that, for angles up to 140 deg, there was less than a 2 percent discrepancy between the analytical predictions and the numerical results. As 180 deg is approached an increased discrepancy is expected due to a gross violation of the Nusselt assumptions. The values of the reference parameter α, which were previously derived for condensation on a vertical surface, were found to be appropriate for the horizontal cylinder as well.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Film and Dropwise Condensation;Handbook of Thermal Science and Engineering;2018

2. Film and Dropwise Condensation;Handbook of Thermal Science and Engineering;2017

3. Condensing Property Researches for the Inorganic Heat Pipes Condenser;Advanced Materials Research;2011-02

4. Complete Similarity Mathematical Models on Laminar Forced Film Condensation of Pure Vapour;Theory of Heat Transfer with Forced Convection Film Flows;2010

5. Forced Convection in Film Condensation on a Horizontal Elliptical Tube;Heat Transfer Engineering;2006-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3