On The Torsional Vibration of Branched Systems Using Extended Transfer Matrix Method

Author:

Sankar S.1

Affiliation:

1. Department of Mechanical Engineering, Concordia University, Montreal, Canada

Abstract

A novel method for the analysis of free vibration of branched torsional systems is presented. The method is radically different from the traditional methods in that an extended transfer matrix relation is formulated for each branch. For this, the calculations are propagated from the junction and proceed simultaneously in all branches toward their respective ends. Then by substituting the compatibility and equilibrium conditions, a frequency dependent characteristic matrix is formulated. This procedure automatically eliminates the need of any additional operation such as matrix inversion and the solution of a system of equations for the formulation of the characteristic matrix and also reduces the size of the matrix. Finally, the boundary conditions are applied to the matrix relation and the natural frequencies are determined from the roots of a frequency determinant derived from the characteristic matrix. For this purpose, the paper introduces a method based on the Newton-Raphson iterative technique which systematically finds the roots of the frequency determinant using both the value of the determinant and its derivative with respect to square of the natural frequency. The paper also presents a procedure for calculating these derivatives directly from the formulation of the extended transfer matrices. Numerical examples are given to illustrate the simplicity and straightforwardness of the proposed method in finding the natural frequencies of complex branched torsional systems. Results indicate that the method is accurate and allows a greater degree of error in the selection of trial frequencies.

Publisher

ASME International

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Torsional vibration characteristics of power transmission system;IOP Conference Series: Materials Science and Engineering;2018-09-20

2. Study on Vibration of Marine Diesel-Electric Hybrid Propulsion System;Mathematical Problems in Engineering;2016

3. Simulation Analysis of the Vibration Characteristics of the Parallel Hybrid Shaft System;Applied Mechanics and Materials;2012-07

4. Torsional Vibration of a Shafting System under Electrical Disturbances;Shock and Vibration;2012

5. Research on the Reliability of Box for Gear Test Bed;Applied Mechanics and Materials;2011-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3